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COMMUNICATION SYSTEM DESIGN 

By Louis A. Frasco 
Electronics Research Center 

SUMMARY 

Many communication system designers feel that they have 
been short-changed by the communication theorist, asserting that 
he has not stated his results in terms meaningful to the prac- 
ticing engineer. The system designer is interested in the over- 
all system performance from the data source to the user. He 
requires measures of performance expressed in terms meaningful 
to him; e.g., achievable data rate and error rate. In a given 
design situation, he may or may not have the freedom to choose 
all parts of the system. In general, however, he is seeking to 
optimize the overall system over a class of allowable processors 
and modems. In this report, an attempt is made to establish the 
relevance of the theoretical aspects of communication system de- 
sign to the work of the practicing engineer in the design of real 
systems. Both analog and digital systems are discussed and lead 
naturally to the consideration of hybrid systems as a general 
solution to system design. A l s o ,  the use that can be made of the 
digital computer for data management and executive control, and 
also in the realization of communication systems is pointed out. 
The report is mainly tutorial with particular emphasis on clarity 
and ease of understanding throughout. 

INTRODUCTION 

In this report, a general introduction to the reliable 
communication of information through noisy media -- space com- 
munication channels, in particular -- is presented. Both random 
corruption and quantization errors due to discrete representa- 
tion of continuous functions are considered. A variety of 
measures of reliability are looked at and their relative merits 
discussed realistically with regard to both system constraints 
and user requirements. The selection of suitable fidelity cri- 
teria in communication system design usually involves a high 
degree of subjectivity and is generally a difficult problem. Its 
fundamental importance, however, requires that it be carefully 
considered. 

An attempt is made to establish the relevance of the more 
theoretical aspects of communication system design (i.e., statis- 
tical communication theory, information theory and coding, etc.) 
to the work of the practicing system design engineer in evaluating 
real systems. 
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Optimum bounds are calculated for the space channel with 2- 
level and -level quantization at the receiver using information 
bit error probability Pb as a measure of reliability. The re- 
sults yield an interpretation of the trade-offs between Pb, SNR, 
and information rate. In addition, these bounds are plotted and 
a comparison made with linear codes (2-level), convolutional 
codes with sequential decoding (-level), and orthogonal/biorthog- 
onal codes with matched filter reception. 

SOURCE CHARACTERIZATION 

An information source (e.g., the outputs of which are meter 
readings, particle counts, speech or video waveforms, etc.) is to 
be interpreted at some remote location. The fidelity required for the 
overall system in reproducing this source depends on the require- 
ments of the user. For example, consider transmitting the fol- 
lowing English text: M = C+N YOU HEAR ME? which gets garbled by 
the transmission medium to M = CEN YOX HE$R MAY?. If it is only 
required that the receiver be able to understand the transmitter 
and exact reproduction is not demanded, some errors can beA 
allowed and M can still be reconstructed (decrypted) from M due 
to the redundancy of the English language. Thus, the degree of 
reliability required in transmitting a source is intimately re- 
lated to its information content; i.e., that part of the message 
which is not redundant. Whatever portion of the message can be 
determined from this part is not worth sending. This concept of 
information content can be formalized and is the basis for the 
theoretical constraints on all so-called data-compression schemes. 
This is just another name for the general source coding problem 
which shall be discussed a little later. 

The transmission of scientific measurement data from remote 
locations is another example. In a particle counting experiment, 
should a scientist be concerned if an error of a percent or so is 
made in the received particle count? The answer depends on the 
experiment. He may be trying to calculate a fundamental constant 
or predicting a third-order effect in some process. He might, 
however, only be looking for large changes in particle count in 
order to detect some gross physical effect. The particular case 
makes a great deal of difference in how reliability is measured. 
In the context of everyday life, this amounts to the differences 
in the tolerances a person might allow in measuring out a few 
feet of rope and those found in a precision watch. This is an 
essential part of numerical approximation. Everyone is aware of 
the importance of being able to make quick approximations which 
are accurate within the context of their daily lives. 

Some additional comments on redundancy fundamental to the 
information transmission problem should be mentioned. In the 
first example, where English text was transmitted, it was seen 
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that the text can still be reproduced after an appreciable amount 
of corruption. However, an extremely complicated system was used 
to accomplish this -- the human mind. Therefore, while not re- 
quiring exact reproduction, it is found that the text can still be 
recovered, but by using an extremely complex deciphering process. 
In general, it will be found that an increase in system complexity 
or computation will have to be traded for a corresponding in- 
crease in source information rate. 

Fundamental to the communications problem is source charac- 
terization. What properties of the source are relevant to the 
observer? As has been mentioned, this question depends on the 
particular problem at hand. In a particle-counting experiment 
on board a spacecraft the observer-scientist might be interested 
only in large fluctuations in particle count. Similarly in image 
processing, the observer is probably very interested in changes 
in intensity which correspond to the boundaries of regions in the 
image. Once the properties of the source which are of interest 
in a particular context have been determined, an attempt is made 
to describe its output at the receiver within the tolerances im- 
posed by the user. In a fuzzy sort of way, it should be clear 
that an attempt to characterize the source based only on these 
properties will, in general, be easier than requiring complete 
specification. This sort of fuzziness will be tolerated; it can 
be eliminated but the effort adds nothing to one's understanding. 

At this point a stochastic model must be adopted to describe 
the uncertainty associated with an inability to adequately des- 
cribe the source output at a given time. For if there were no 
undertainty and the source output could be specified at each 
instant of time within user tolerances, there would be no infor- 
mation to transmit! Certainly one should start by trying to fit 
observations to the simplest models. A few questions come readily 
to mind. Are the source statistics independent of the time of 
observation (stationarity)? Is their distribution uniform, 
Gaussian, Poisson, etc.? If a stationary source is assumed (which 
is realistic in many situations), what does the source power spec- 
trum look like? Is it band-limited? The answers to these questions 
are fundamental to the design of an efficient communication system. 

The statistical distribution of the source output may be 
determined basically in two ways: (1) A theoretical analysis of 
the underlying physical processes producing the source outputs; 
for example, one can model the particle-counting experiments as 
measurements from a source the output of which is a Poisson pro- 
cess: ( 2 )  The experimental measurement of source outputs used to 
determine an empirical distribution. In this case, output data 
can be used to construct histograms or used to estimate para- 
meters of an assumed distribution. 
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Well-known t echn iques  have been developed t o  measure t h e  
power spectrum from source  o u t p u t s .  The shape of t h e  source  spec- 
trum i s  impor tan t  fo r  t h e  fo l lowing  reasons .  I f  t h e  source  out -  
p u t  i s  band-l imited ( i . e . ,  i t s  power spectrum i s  l i m i t e d  t o  fre- 
quencies  wi th in  a f i n i t e  band) ,  it can be shown t h a t  no informa- 
t i o n  i s  l o s t  if t h e  sou rce  o u t p u t  i s  sampled a t  an a p p r o p r i a t e  
ra te  (Nyquist  r a t e ) .  Moreover, i f  t h e  power spectrum i s  f l a t ,  
t h e  samples w i l l  be s t a t i s t i c a l l y  u n c o r r e l a t e d  (which f o r  a 
Gaussian source  i m p l i e s  s t a t i s t i c a l l y  independent  samples) .  But 
what does a l l  of  t h i s  mean i n  t e r m s  of  communicating t h e  source  
t o  t h e  use r?  

The ou tpu t  o f  a g e n e r a l  source  i s  an ana log  waveform. A t  
any f i x e d  i n s t a n t  of t i m e ,  t h i s  waveform i s  t h e o r e t i c a l l y  capable  
of  c a r r y i n g  as much informat ion  as one d e s i r e s .  For example, if 
t h e  va lue  t h e  waveform t a k e s  on a t  a p a r t i c u l a r  i n s t a n t  could be 
measured e x a c t l y ,  t h i s  complete r e p o r t  could  be recorded as a 
number equal  t o  t h i s  va lue  by t h e  fo l lowing  s imple c o n s t r u c t i o n .  
G i v e  a b ina ry  code t o  each l e t t e r  i n c l u d i n g  t h e  co lon ,  t h e  pe r iod ,  
t h e  space,  etc.  (as  a d i g i t a l  computer d o e s ) .  Then, s t a r t i n g  wi th  
t h e  f i r s t  word i n  t h e  r e p o r t  and ending wi th  t h e  l a s t ,  s t r i n g  o u t  
t h e  corresponding sequence of  b ina ry  d i g i t s ,  p u t  a pe r iod  i n  
f r o n t ,  and cons ide r  i t  a b ina ry  f r a c t i o n  t h e  va lue  of which i s  
t h e  h e i g h t  of  t h e  waveform a t  t h e  f i x e d  i n s t a n t !  Of course ,  t h i s  
proposa l  i s  u n r e a l i s t i c  b u t  it does b r i n g  home t h e  fo l lowing  p o i n t .  
The problem i s  n o t  w i th  t h e  c o n s t r u c t i o n ,  b u t  it i s  i n h e r e n t  i n  
an i n a b i l i t y  t o  make measurements a c c u r a t e  enough. This  appears  
t o  be a s e p a r a t e  p h y s i c a l  problem from t h e  n o i s e ,  b u t  is  neverthe-  
less of  t h e  s a m e  g e n e r a l  type .  Also,  i n  r e a l i t y ,  t h e  source i s  
measured wi th  r ea l  ins t ruments  of f i n i t e  bandwidth which con- 
s t r a i n s  t h e  amount of "wigglyness" they  can i n t e r p r e t .  T h i s  means 
t h a t  a l r eady  a t r ade -o f f  e x i s t s  between ins t rument  bandwidth and 
t h e  bandwidth necessary  t o  d e s c r i b e  t h e  source .  I n  any case, i n  
t h e  r e a l  world,  a l l  s i g n a l s  are band-l imited and,  t h e r e f o r e ,  t h e r e  
i s  s o m e  upper l i m i t  t o  t h e  ra te  a t  which they  must be sampled 
wi thout  any loss excluding  t h e  loss due t o  t h e  measuring i n s t r u -  
ment. 

F i n a l l y ,  t h e  added n i c e t i e s  of a f l a t  source spectrum and 
Gaussian s t a t i s t i c s  a l low t h e  source  t o  be f a i t h f u l l y  r ep resen ted  
by a sequence of independent Gaussian t i m e  samples. S ince  ad- 
j a c e n t  samples c o n t a i n  no informat ion  about  each o t h e r  (no 
coupl ing)  due t o  t h e i r  s t a t i s t i c a l  independence, t h e  o r i g i n a l  
analog source  has  been simply r ep resen ted  as a memoryless t i m e -  
d i s c r e t e  source  by t i m e  sampling a t  t h e  Nyquist  r a t e .  I n  gen- 
e ra l ,  f o r  an a r b i t r a r y  source  spectrum t h e  t i m e  samples w i l l  be  
c o r r e l a t e d .  H o w e v e r ,  as s h a l l  be seen l a t e r ,  it may be pro- 
f i t a b l e  to do s o m e  p rep rocess ing  of  t h e  source  t o  t r y  t o  achieve  
some of t hose  q u a l i t i e s  which s e e m . d e s i r a b l e  ( e .g . ,  prewhitening,  
d i s t r i b u t i o n  t r ans fo rma t ion ,  e tc . )  It  should be clear a t  t h i s  
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point that source characterization is fundamental and requires 
some care; sloppiness at this point will propagate added problems 
throughout the whole system. A by-product of source characteriza- 
tion is the implicit determination of realistic reliability cri- 
teria.. Next some representative performance criteria are con- 
sidered. 

MEASURE OF DISTORTION 

The amount of source distortion that can be tolerated is 
entirely dependent on user requirements. These requirements aid 
us in our choice of a distortion measure. Consider a general 
source with output a(t), a sample function from a stochastic pro- 
cess. The source output is somehow processed, transmitted, re- 
processed, and then presented to the user as s(t) (see Figure 1). 
The instantaneous error between the actual source output and its 
reproduction at the receiver is defined by e(t) 4 - a(t) - a(t); e(t) 
is then the deviation from exact reproduction. The problem now 
reduces to choosing a distortion function D[e(t)] which measures 
the user's relative happiness with what he has received. This 
choice may be difficult. Choosing a specific distortion function 
which meets user requirements is somewhat subjective. Can there 
be any assurance that exactly the right measure of distortion has 
been chosen? Probably not. At best there exists a fuzzy relation- 
ship between user requirements and the proper distortion function. 

.:.It can only be hoped at the outset that system performance is not 
particularly sensitive to the detailed form of the distortion 
function chosen -- only to its general functional form. One can 
state two general properties "nice" distortion functions might 
have: 1) They should be monotone-increasing; i.e., the larger 
the error e(t) the larger the distortion; 2) They should also be 
symmetric; i.e., positive and negative errors of the same magni- 
tude yield the same distortion. Even if these properties do 
not seem reasonable, in general, there exists a large class of 
distortion functions which satisfy them. Some examples of distor- 
tion functions are shown in Figure 2. Since a(t) is a sample 
function from a random process, the statistical average of the 
distortion measure D[e(t)] 4 E[D[e(t) 1 1  shall be considered. This 
does not impose any serious restriction on the fidelity criteria 
that can be considered. For example: a) Dl[?(t)I = E[la(t)-a(t)/], 
the mean error magnitude: b) D2[e(t) 1 = E[ (a(t);$(t))2], 
the mean square error; c) ~3[e(t)] = A Pr[ la(t)-a(t> I>d], the 
probability that the error magnitude is greater than some constant 
(for the case A=l). In the particular case when the source statis- 
tics and channel disturbance are Gaussian, it has been shown that 
the form of the optimum processor (receiver) is invariant over a 
large class of distortion functions (including those of Figure 2 ) .  
This is particularly satisfying, since whatever distortion measure 
was subjectively chosen from this large class, it would lead to 
an identical system. 

5 



TRAN SMI SS ION 
PROCESSOR Y 

Figure 1.- General communication system model 

Figure 2.- Distortion functions 

The previous examples of distortion measure have all been 
passive. In general, there may be interest in distortion measures 
which include the dynamics of the error. For example, in the 
particle-counting experiment where rapid fluctuations in the 
count are of interest or in image processing where the intensity 
variation at boundary regions in the image is of particular im- 
portance, one might want a distortion function of the form: 

The number of different types of distortion functions is 
large and diverse. The importance of the proper choice of dis- 
tortion function (or at least choice of a class of functions to 
which performance is relatively insensitive) cannot be over- 
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emphasized. The added effort required to pick a distortion func- 
tion which accurately characterizes the source to within user re- 
quirements is repaid many times over in the overall system design 
function. 

The problem of reliable communication has now been reduced 
to constraining the average distortion D[e(t)l associated with 
the information source to a tolerable level. A reasonable ques- 
tion to ask is how well can one hope to do; i.e., what is the 
optimum performance. This is a very important question and should 
be answered. The answer will yield a yardstick by which to judge 
the performance of sub-optimum systems. 

RATE-DISTORTION THEORY 

Questions relating to optimum source reproduction for a given 
distortion measure find their answers in Shannon's rate-distortion 
theory (an area of information theory which, unfortunately, is 
practically unknown -- and hence obscure -- to anyone other than 
information theorists). In the next few lines, a cursory treat- 
ment of rate-distortion theory relevant to the problem at hand 
will be attempted. 

Once a distortion measure D[e(t)] is chosen for the source 
and a tolerable level of distortion E (i.e., D[e(t)] < E) deter- 
mined, a function R(E) can be defined which depends on the source 
statistics, distortion measure, and, of course, E. RCE) is called 
the rate-distortion function. It can be shown that R(E) measures 
the equivalent information rate of the source (e.g., information 
bits/sec). If everything between the source and the user is con- 
sidered as the channel (i.e., processors and transmitting medium) , 
it can be characterized by a transition probability distribution 
between source outputs and the inputs to the user, and a quantity 
C called channeZ capacity can be defined. Channel capacity is a 
quantity fundamental to "conventional" information theory and 
measures the maximum rate at which information may be transmitted 
over the channel reliably (i.e., in the sense of arbitrarily small 
error probability). It can be shown that a necessary condition 
for transmitting a waveform a(t) over a channel with capacity C 
with an average distortion E or less is that R(E)SC(result due 
to Shannon). In fact, it is possible to encode the output of the 
source and transmit it over a channel with capacity C with a dis- 
tortion as near E as desired for any R ( & ) < C !  The above theorem 
is what gives meaning to R(&)as the equivaZent rate of the source, 
i.e., the highest rate at which the source must be transmitted 
and still keep the average distortion E or less. 

These results are very satisfying. Only the calculation of 
R(E) for a given source and distortion measure is needed in order 
to determine the optimum (maximum) information rate of the source 
for a given distortion E. There'is a catch, however. In general, 
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R ( E )  is very difficult to calculate for an arbitrary source. Pre- 
sently much of the work being done in rate-distortion theory is 
in determining methods to calculate R ( E )  or to find tight bounds. 
Also, some effort has been devoted to defining R ( E )  for a class 
of sources in cases where only vague a p r i o r i  knowledge is avail- 
able about the source. R ( E )  has been calculated in some cases -- 
for the Gaussian source with mean square error distortion measure 
in particular. In this case, for a source the outputs of which 
are band-limited, setting R ( E )  = C where C is the capacity of a 
band-limited channel with additive white Gaussian noise, an equa- 
tion is obtained for the minimum mean square error distortion as 
a function of required signal-to-noise ratio. It can be shown 
that this result for the Gaussian case upperbounds the optimum 
performance for all other sources using the mean square error 
criterion. This result can be compared with the curves for sub- 
optimum processors to measure their performance. If the source 
is not Gaussian or the appropriate distortion measure is not in 
the mean square error class (e.g., Figure 2 ) ,  or both, then the 
calculation of R ( E )  may be very difficult. Therefore, as a 
matter of general design philosophy, one should compare, if pos- 
sible, the performance of each sub-optimum system considered for 
a particular system application with the best that can possibly 
be done. 

COMMUNICATION SYSTEM CLASSIFICATION 

Processors of a general stochastic source are of three basic 
types: 1) Analog (continuous) ; 2 )  Time Discrete - Amplitude Con- 
tinuous (sampled-data) ; 3 )  Time Discrete - Amplitude Discrete 
(sampled and quantized). Examples of each type are listed in Fig- 
ure 3 .  Of course, analog processing is the most general in the 
sense that one is able to deal with a continuous source output. 
In general, processing becomes more restrictive (less efficient 
but probably also less complicated) as one moves from Type 1 to 
Type 3 processing. However, if the source is band-limited, 
nothing is lost by using a Type 2 processor sampling at the 
Nyquist rate. As mentioned previously, in practice one deals 
with sensors and associated hardware with finite bandwidth and, 
therefore, must live with this bandwidth constraint. Therefore, 
without much l o s s  of generality, the processor input stream can 
be considered to consist of continuous samples of the source 
output taken at uniform times (these samples have as their 
probability distribution, the distribution of the source, and 
therefore are, in general, correlated). In moving to Type 3 ,  
one must be more careful. The transition from Type 2 requires 
that each time-discrete sample (or sequence of such samples) be 
quantized and then processed. How much information is lost, if 
any? The answer depends on a lot of things -- the particular 
source statistics, the channel noise, and the distortion measure. 
For example, if a Gaussian source and the mean square error 
distortion criteria are assumed, it has been shown that even for 
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TYPE 

1 

2 

3 

EX A M P  LES 

O p t i m u m  Ang le  Modu la t ion  

A M - A  mp I it u de Modu la t ion  

FM-Freq uency  Modu la t ion  

PAM-  Pu lse  Ampl i tude Modu la t ion  

DFM-Discrete Frequency Modu la t ion  

PDM-Pu lse  Dura t i on  Modu la t ion  

PCM-Pu lse  Code Modu la t ion  

Algebraic Coding-Hamming a n d  BCH Codes 

Probabi l is t ic  Coding-Sequent ia l  Decoding 

Figure 3 . -  Communication system classification 
uncorrelated time samples processed by an optimum uniform 
quantizer, about 1/4 bit per sample more is required than with 
optimum processing of sequences of the continuous amplitude 
samples. In general, the type of processor must be chosen based 
on the particular problem and the performance required. 

Up until now, little mention has been made of some of the 
more practical aspects of communication system design. Along with 
theoretical performance of optimum processors, important questions 
of complexity, particular system requirements, compatibility, etc., 
must be considered. These questions, as one might suspect, are 
much more difficult to answer in general. Most of the results 
one gets in information theory concerning optimum processors are 
based on existence proofs. They are not constructive. One is not 
given anything which can be built (or at least anything simple 
enough so that one would want to!). 

In summary, the communication system designer is generally 
confronted with choosing among analog systems (Types 1 and 2) 
and digital systems (Type 3 )  in a particular design situation. In 
the past few pages, an attempt has been made to convey the i n -  
herent depth of the problem and to point out that the intelligent 
designer had best consider the whole problem from source charac- 
terization to user requirements. Arguments can surely be made 
for both analog and digital communication, but it is foolish and 
very dangerous (in terms of system efficiency) to stick stubbornly 
to one scheme or the other, regardless of the problem at hand. 

HYBRID SYSTEMS 

In general, a communication system designer will find him- 
self combining both types of processing into some sort of hybrid 
scheme which utilizes the advantages of each. For example, analog 
processing may be "natural" for spectral shaping and various 
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o t h e r  a s p e c t s  of s i g n a l  cond i t ion ing .  Some examples o f  ' ' na tura l"  
p rocess ing  i n c l u d e  c o n t r o l l i n g  p i c t u r e  r e s o l u t i o n  w i t h  f i l m  of 
d i f f e r e n t  s e n s i t i v i t y  ( t h e  f i l m  c o n t a i n s  t h e  squared magnitude of  
t h e  sou rce  o u t p u t  spec t rum) ,  t h e  use  of o p t i c a l  f i l t e rs ,  and 
mechanical l i n k a g e s  i n  measuring in s t rumen t s  (e.g. , governors  o r  
s t o p s  t o  c o n t r o l  dynamic range,  e t c . ) .  A s  an example o f  t r a d e -  
offs between analog and d i g i t a l  t e c h n i q u e s , ' c o n s i d e r  a p a r t i c u l a r  
a p p l i c a t i o n  where e i g h t  l e v e l s  of q u a n t i z a t i o n  ( i .e . ,  3 - b i t  quan t i -  
z a t i o n )  of  t h e  source  d a t a  samples i n t r o d u c e  n e g l i g i b l e  degrad- 
a t i o n  f r o m  t h e  cont inuous source  r e p r e s e n t a t i o n  (based on overal l  
system performance) .  I n  t h i s  case, t h e  levels could  be e f f i -  
c i e n t l y  encoded i n t o  sequences of b i n a r y  d i g i t s  ( e i t h e r  by o p t i -  
mum (en t ropy)  source encoding techniques  o r ,  subopt imal ly ,  simply 
as t h e  b ina ry  number r e p r e s e n t a t i o n  of  t h e  l e v e l ) .  The b i n a r y  
d i g i t s  could then  be grouped i n t o  sequences of l e n g t h  k ,  t r a n s -  
mi t t ed  over t h e  channel  as one of  M=2k ana log  waveforms and then  
d e t e c t e d  a t  t h e  receiver, converted back t o  k b i n a r y  d i g i t s  and 
decoded as a q u a n t i z a t i o n  l e v e l .  A l t e r n a t i v e l y ,  one could t a k e  
t h e  block of  k b i n a r y  d i g i t s  and send them one a t  a t i m e  by u s i n g  
on ly  2 analog s i g n a l s  i n s t e a d  of  2k. 
c a l l e d  b i t -by -b i t  s i g n a l l i n g .  Of cour se ,  i f  one of t h e  b i t s  s e n t  
i s  i n v e r t e d  by n o i s e  on t h e  channel ,  t h e  e r r o r  w i l l  n o t  be d e t e c t e d .  
To g e t  around t h i s ,  a p a r i t y  b i t  can be added on be fo re  t h e  block 
i s  t r a n s m i t t e d  t o  t e l l  if t h e  number of 1's i n  t h e  block i s  odd o r  
even. Then t h e  block of k + l  b i t s  i s  s e n t  b i t - b y - b i t ;  i f  a s i n g l e  
e r r o r  occur s ,  it w i l l  be d e t e c t e d .  I n  g e n e r a l ,  a d d i t i o n a l  b i t s  
can be  added t o  each block t o  o b t a i n  more informat ion .  The re fo re ,  
each sequence of  k informat ion  b i t s  may be encoded i n t o  b locks  n 
b i t s  long  (where t h e  a d d i t i o n a l  n-k b i t s  have been added t o  com-  
b a t  n o i s e ) .  These b locks  are c a l l e d  c o d e w o r d s  and t h e  c o r r e s -  
ponding code s t r u c t u r e ,  an (n ,k )  block code o f  l e n g t h  n w i t h  k 
informat ion  b i t s .  The c o d e  r a t e  ( i n  informat ion  b i t s / channe l  b i t )  
i s  de f ined  a s  R=k/n and is  a measure of  t h e  redundancy of t h e  block 
code. It  i s  c lear  t h a t  a t rade-of f  e x i s t s  between t h e  ra te  R a t  
which informat ion  i s  t r a n s m i t t e d  w i t h  a block code and t h e  i n -  
crease i n  performance due t o  t h e  a d d i t i o n a l  b i t s  s e n t  over  t h e  
channel t o  combat no i se .  The under ly ing  philosophy i n  t h e  f o r e -  
going example i s  fundamental. Given o u t p u t  d a t a  samples from t h e  
sou rce ,  as much redundancy i s  e l imina ted  from them as p o s s i b l e  
( d a t a  compression).  Then based on t h e  n o i s e  s t a t i s t i c s  of t h e  
channel ,  a c e r t a i n  amount of  " s t r u c t u r e d "  redundancy i s  in t roduced  
t o  f i g h t  channel  n o i s e  ( e . g . ,  p a r i t y  b i t s ) .  

T h i s  method i s  commonly 

I t  must be emphasized aga in  t h a t  t h e  preceding examples are 
j u s t  meant t o  p o i n t  o u t  t h e  f l e x i b i l i t y  a v a i l a b l e  i n  system des ign .  
They are n o t  meant t o  s e r v e  as an exhaus t ive  l i s t  of t h e  a l t e r n a -  
t ives  a v a i l a b l e  and are,  i n  g e n e r a l ,  subopt imal .  What i s  a c t u a l l y  
done i n  a p a r t i c u l a r  s i t u a t i o n  w i l l  depend on t h e  l e v e l  of  re l ia -  
b i l i t y  demanded and p r a c t i c a l  c o n s i d e r a t i o n s .  The t a s k  of  t h e  
communication system des igne r  i s  n o t  an easy  one. A t  b e s t ,  one 
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can equip him with an incomplete specification of the problem, 
a multitude of subjective considerations, an intelligent set of 
alternatives, courage, and hope for the best! 

At this point, an impasse has been reached in the general 
discussion of analog and digital communication systems. In order 
to continue, the discussion must be restricted to a particular 
system type. The choice is arbitrary in that both types of sys- 
tems deserve consideration in a general system design problem. 
However, analog communication has reached a reasonable level of 
sophistication (in theory at least, if not in application) and 
many good books have been written on the subject both for the 
theoretician and the practicing engineer. Along with these con- 
siderations, the fact that digital communication techniques are 
less well-known by communication system designers justifies an in- 
depth study of these techniques. Of course, whenever appropriate, 
various trade-offs between the system types will be discussed. 

DIGITAL COMMUNICATION SYSTEMS 

There are many system considerations which make digital com- 
munication very attractive. For example, in digital systems where 
bit-by-bit signalling is used ( ?  some analog waveform) propagation 
l o s s  in the transmission medium is easily handled by repeaters 
placed along the transmission path. A repeater is a device which 
decides whether the attenuated or distorted waveform is positive 
or negative and then regenerates it. A l s o ,  with the ever-increas- 
ing role being played by the digital computer today (not to outlaw 
analog computers where appropriate), information not in digital 
form to start with is very likely to run into a digital computer 
somewhere along the line and have to be digitized. In the design 
of communication systems for space probes the computer is a power- 
ful tool for data management of experiments (e.g., formatting, 

course,one could argue that in certain cases the computer could 
be used efficiently to control peripheral analog devices. In gen- 
eral and from a more mundane point of view, a digital processor 
usually turns out to be conceptually simpler to understand. Com- 
plicated processes may be simply expressed numerically for inter- 
pretation by computer. 

-2. preprocessing, adaptive processing, reconfiguring, etc.). Of 

In communicating source information to the user, a good deal 
of the performance depends on the channel statistics as well as 
source statistics. In dealing with space communications, the only 
limitation imposed by the channel is essentially the receiver's 
front-end thermal noise (all other sources of disturbance such as 
sky noise are negligible in comparison). This front-end noise 
is assumed to be additive white Gaussian -- an assumption with 
which experimental results agree. Throughout the study of digital 
communication systems, the main concern shall be with the problem 
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of transmitting binary data to the user over an additive Gaussian 
white noise channel with bit-by-bit signalling (i.e., the space 
channel). The measure of distortion shall be restricted to infor- 
mation bit error rate Pb. 
bit reproduction independent of the block structure of a partic- 
ular code. However, when exact reproduction of blocks of informa- 
tion bits is a necessary system constraint, the codeword error 
probability Pw may be a more meaningful measure of system perfor- 
mance. In what follows, source characterization is not considered 
explicitly, but it is assumed that the source has been already 
efficiently encoded into sequences of binary digits within toler- 
able distortion. An attempt is 'then made to maximize the number 
of these bits which can be sent through the channel to the user 
unchanged (i.e., minimize the error rate). This decomposes the 
problem to be considered into two parts. It places the burden of 
constraining system distortion and maximizing the information rate 
on the source encoder (e.g., a quantizer, a data compression scheme, 
etc.) and then choosing a separate channel encoder and decoder to 
keep the information bit errors over the channel negligible. It 
can be shown that, in theory, nothing is lost by this decomposi- 
tion and, therefore, it does not violate the general philosophy 
of optimizing over the complete system. However, in real systems 
where practical constraints exist on the source and channel coders, 
the results may be suboptimal. Nevertheless, it allows one to con- 
centrate on the structure of various channel coding systems with- 
out involving the complexity of the overall system design problem 
initially. 

This will yield a measure of information 

Such a digital communication system is shown in Figure 4. It 
consists of an information source which puts out binary digits 
( i n f o r m a t i o n  b i t s )  at a rate rs bits per second, sequences of which 
are encoded using a block code of rate R. The output of the en- 
coder is a sequence of binary digits (in general, composed of in- 
formation bits and parity bits) called c h a n n e 2  bits, each of which 
is then assigned by the transmitter one of two analog signals and'& 
sent over the channel. At the receiver, each incoming signal is 
detected as a ''one" or a "zero" (bit-by-bit detection with "hard 
decision") and passed on to a decoder, the outputs of which are 
the decoded information bits for the user. In a system using bit- 
by-bit signalling, it is clear that the channel coding is indepen- 
dent of the transmitter/receiver structure and therefore may be 
optimized separately with no loss. It can be shown that, in this 
case, the optimum signalling scheme uses antipodal signals (i.e., 
one analog signal is the negative of the other); these signals are 
commonly called either a b i o r t h o g i n a 2  or PSK signal set and the 
optimum receiver, a m a t c h e d  filter. The output of the filter is a 
real number, r, with a Gaussian probability distribution (i.e.: 

r =  r(t)s(t) dt, where s(t) is the transmitted signal, r(t) 
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is the received signal corrupted by the channel noise, and Tc is the 
channel bit duration). A "hard decision" is made by passing this 
variable, r, through a threshold device which determines its sign. 
Based on this information, the received signal is detected as a 

111" or a 110"  (i.e.: r 0 ) .  Let p equal the probability that a 

transmitted bit is detected incorrectly at the receiver (by sym- 
metry of the signal set and of the channel noise this probability 
is independent of whether a " 0 "  or "1" was sent and is therefore 
well-defined). The probability, p, is, therefore, the channel bit 
error probability and completely characterizes the channel and the 
transmitter/receiver structure when "hard decisions" are made at 
the receiver. 

1 

0 

INFORMATION THEORETIC LIMITATIONS ON PERFORMANCE 

The digital communications system is represented schemati- 
cally in Figure 5. Here, the channel and the transmitter/receiver 
structure have been replaced by a box called a b i n a r y  symmetric  
channeZ (BSC). The BSC accepts at its input a channel bit. With 
probability, p, it delivers to its output the bit inverted and 
with probability 1-p delivers it unchanged. It can be shown that 

2 
X - -  

e dx = fk] = some function of signal- 
to-noise ratio alone, 

where E, is the energy associated with each channel bit (i.e., the 
received energy in the signal used to send the bit) and No is the 
average noise power (watts/cycle). Note the simplicity of this re- 
sult; the channel error rate is simply a function of SNR. This is 
an extremely pleasant result and is a direct consequence of the 
white Gaussian channel noise assumption. It should not be expected 
for general channels other than the space channel. This result 
allows an explicit relationship to be obtained between information 
bit error rate and SNR for the BSC. 

Assume an average power constraint, St, on the transmitter (a 
design constraint often imposed in practice) and let Sr = aSt equal 
the received transmitter power with attenuation a (a depending on 
antenna size, distance, etc.). Define Eb 4 [nEs]/k = Es/R as the 
energy per information bit. If there is no channel coding ( R  = 
k/n = 11, E,/No = Eb/No and Pb = p = f(Eb/No) is the information 
bit error probability. However, in general, with a channel code 
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of rate R, Es/No = RIEb/No]. In this case, Pb is a function of 
the channel bit error rate p which, in turn, is a function of 
Es/No; i.e., Pb = g(Es/No) = g[R(Eb/No)]. Therefore, for a given 
code (fixed R), requiring a particular level of performance, Pb 
implies a value for Eb/No. Some symbol manipulation yields Eb/No = 
nEs/kNo = nSrTc/kNo = Sr/Nor = aSt/Nor where r = k/nTc equals the 
received information rate in bits per second. From this result, 
it is clear that one would like to find codes with as small an 
Eb/No as possible, since Eb/No = aSt/Nor implies that a decrease 
in Eb/No would mean less required transmitter power St, an in- 
crease in the information transmission rate r or allow a smaller 
a .  

Reasonable questions to ask at this point are what is the smal- 
lest Eb/No that can possibly be hoped for and how difficult is it to 
achieve? To answer these questions, it is necessary to return brief- 
ly to information theory and to the concept of channel capacity. 
Channel capacity determines the ultimate rate at which one can trans- 
mit information over a channel with arbitrarily small error probabil- 
ity. Attempts to transmit reliably above this rate are doomed to 
failure. For the BSC,  the channel capacity is CBSC = 1 - H(p) 
where H(x) is the binary entropy function (Figure 6a). Cssc as 
a function of Es/No is sketched in Figure 6b. To determine the 
minimum Eb/No necessary to achieve reliable communication, first 
fix the code rate at R, choose the smallest Es/No by setting R = 
CBSC (anything smaller than this would yield R > CBSC) and then, 
using this Es/No, compute Eb/No = Es/RNo. Do this for all R and 
take the minimum. A graphical interpretation is given in Fig- 
ure 6c. More formally, set R = CBSC = 1 - H(f(REb/No)). This 
equation allows the determination of Eb/Nolmin,R as a function 
of code rate R. 
monotone increasing function of R and that Eb/Nolmin = 
(2/~1n2)-1 = 0 . 3 7  dB. 
plotted for some simple block codes using bit-by-bit signalling 
and "hard decision" at the receiver (Figure 7). It can be seen 
that for small Pb, there is still quite a way to go to achieve 
Eb/No(min (about 6 or 7 dB). However, it is known from informa- 
tion theoretic arguments that there do exist block codes that 
operate with negligible error probability and achieve this mini- 
mum. As the graph seems to indicate, these codes are probably 
fairly complex. In many cases, channel encoding is straight- 
forward and relatively simple to implement, even for fairly large 
block lengths. The complexity generally rests in standard methods 
of decoding! Therefore, since it is known that good block codes 
exist, one needs to construct such a class of codes with an effi- 
cient decoding algorithm. 

It can be shown that Eb/Nolmin,R = h(R) is a 
h(R) = lim 

In comparison, Pb vs. Eb/No has R+obeen 

An alternate method for determining bounds on the optimum 
performance of binary coded systems utilizes the results of rate- 
distortion theory where the average distortion 5 = Pb. In this 
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case, assume a particular transmitter-receiver structure is given. 
This fixes Sr and Tc which, in turn, determine the channel bit 
error probability, p. One now asks the following question. What 
is the maximum information bit rate, r, at which one can transmit 
over this channel with PbI E. It can be shown that 

where rc = l/Tc is the channel bit rate. In fact, this rate can 
actually be achieved if coding of arbitrary complexity is allowed. 
Equation ( * )  is derived in the Appendix as a direct consequence 
of rate-distortion'theory applied to a binary source. Similar 
expressions can be derived for channels other than the BSC. There- 
fore, when constrained to use a particular channel (i.e., fixed 
p and rC), equation ( * )  yields the maximum achievable information 
bit rate r at which one can transmit information and still main- 
tain PbIc. Moreover, this result reduces to the first method as 
a special case if we demand Pb + 0 and maximize r over all possible 
BSC channels (see the Appendix). 

To digress for a moment, an informal derivation of ( * )  is 
given which is intuitively appealing. First, as a limiting case, 
let Pb -t 0. Then 1 - H(Pb) + 1 and ( * )  reduces to r s  (l-H(p))rc 
or r/rc = k/n = R<C~sc(p) which, as should be expected, is 
Shannon's result for error-free transmission. Now in general, 
Figure 8a illustrates the situation schematically. Given a BSC 
with crossover probability p, its capacity is C~sc(p) = 1 - H(p) 
information bits/channel symbol and therefore (l-H(p))rc is the 
capacity in information bits/sec. Now if everything within the 
dotted box is considered as another BSC with crossover probability 
Pb(Figure 8b), it has capacity (l-H(Pb))r information bits/sec. 
Since the inner channel forms the "bottleneck" of the communica- 
tion system, its capacity determines the upper limit on informa- 
tion bit rate, i.e.: (1-H(Ph))r2(1-H(p))rc or rz(l-H(p))/ 
(I-H(Pb) )re "QED". 

Up until now in the digital communications system considered, 
the receiver has been making "hard decisions". As has already 
been stated, the matched filter output is a continuous variable r 
which is "quantized" into two levels (positive and negative values) 
to yield hard decisions at the detector output. Clearly, if some 
measure of confidence in a " 0 "  or "1" were allowed for, one could 
make better decisions. One example would be to adopt a binary 
erasure channel model (see Figure 9 ) .  The value of r is detected 
as one of three levels: a I ' l " ,  a 110" ,  and an erasure X which 
expresses uncertainty with a value of r too close to the detection 
threshold (i.e., close to zero). After a complete code word has 
been received, the information contained in the code structure 
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(e.g., parity checks) and the channel information (erasures) can 
be combined to help decode the block. In general, r can be quan- 
tized to an arbitrary number of levels (each level giving a dif- 
ferent amount of confidence in the detected channel bits). How 
this information is used in decoding depends on the particular 
code and decoding algorithm used. Certainly the best one can 
hope to do in extracting information from r will correspond to 
infinite quantization. By using a simple argument based on the 
results of information theory -- rate-distortion theory, in parti- 
cular -- a bound on Eb/No as a function of Pb can be derived from 
an expression similar to ( * )  : Eb/No :In 2 [l-H[Pb]]. This bound 

t is plotted in Figure 7. It can be shown that there exists a code 
which actually achieves this performance (see the Appendix where 
this result and some of the other information-theoretic results 

( of this section are proved for the more ambitious reader). There- 
fore, there is a 2-dB gain in allowing infinite (a) quantization; 
one shall see later that, in some cases, eight levels of quantiza- 
tion are enough to achieve this gain. It is interesting to note 
at this point that Shannon's capacity formula for the continuous 
channel (where infinite quantization at the transmitter and not 
just binary signalling is also allowed) yields Eb/No!min = In 2 
(obtained for very low code rates R) as in our binary signalling 
case with infinite quantization just at the receiver. This implies 
that, theoretically at least, nothing is lost by simply using bin- 
ary signalling at the transmitter in place of using arbitrarily 
complex signal sets to represent blocks of the binary data, when 
willing to use extremely low rate binary block codes (low SNR). 
It must be pointed out, however, that, in practice, binary sig- 
nalling might require the use of extremely complex codes and bring 
added problems (e.g., bit synchronization, etc.) caused by low Val- 
ues of E,/No. With this in mind, the simple transmitter/receiver 
structure used with binary coding should be explored, complexity 
measured, and compared with the generally more complex analog 
modems (modulator/demodulator) available. Note that, although 
known codes are far from the hard decision optimum bound, this 
bound might still be approached by these simple codes by using 
higher-level quantization at the receiver. 

t ORTHOGONAL CODES 

As an example of signal sets more complex than binary sig- 

in Figure 7. Here, information bits are grouped in blocks of k 
bits and each block is represented by one of M=2k orthogonal sig- 
nals. The corresponding orthogonal signal is transmitted and 
detected by an optimum receiver (matched filter again). (The use 
of a complex signal set is somewhat misleading since it can be 
shown to be equivalent to using a (2k,k) binary code with binary 
signalling at the transmitter and a-quantization at the receiver.) 
It has been proven that orthogonal signalling is optimum for the 

1 nalling, the performance of orthogonal signalling has been plotted 
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whi te  Gaussian n o i s e  channel wi th  i n f i n i t e  bandwidth ( i . e . ,  y i e l d s  
t h e  minimum error  r a t e  as k + m ) .  The i n f i n i t e  bandwidth con- 
s t r a i n t  i s  necessary  s i n c e  k + m imp l i e s  t h a t  M = number of or thog-  
o n a l  s i g n a l s  -+ a. I t  has  been shown t h a t  t h e  maximum number of 
or thogonal  s i g n a l s  a v a i l a b l e  i n  t i m e  T and bandwidth W i s  propor- 
t i o n a l  t o  W T .  S ince  T = ak ( i . e . ,  T i s  p r o p o r t i o n a l  t o  k ) ,  t hen  
M=2k<_W ak and t h e r e f o r e  W>2k/ak + a. From t h e  graph,  it can be 
seen t h a t  t h e  or thogonal  codes approach Eb/Nolmin = I n  2 very  
s lowly as k i n c r e a s e s  (of cour se ,  t hey  reach  it fo r  k -+ w ,  b u t  
t h i s  i s  n o t  ve ry  p r a c t i c a l ) .  A l s o  t h e  a s s o c i a t e d  r e c e i v e r  s t r u c -  
t u r e  i s  very complex (number of  matched f i l t e r s  goes up as 2k ) .  

c a l l y  optimum f o r  t h e  space  channel (assuming i n f i n i t e  bandwidth) 
b u t  hope le s s ly  i m p r a c t i c a l  f o r  l a r g e  k! 

Therefore ,  a communication system has been found which i s  t h e o r e t i -  4 

? 

Note t h a t ,  a l though or thogonal  codes r e q u i r e  an i n f i n i t e  band- 
width channel  f o r  o p t i m a l i t y ,  Shannon's coding theorem guarantees  
t h e  e x i s t e n c e  of  b ina ry  codes of  r easonab le  rates ( e .g . ,  R = 1 / 1 0 )  
wi th  Pb -+ 0 f o r  which Eb/No i s  very close t o  t h e  optimum. Such 
codes are e s s e n t i a l l y  optimum ( i n  t h e  p r a c t i c a l  s ense )  and r e q u i r e  
only about  an o r d e r  of  magnitude more bandwidth than  uncoded t r a n s -  
mission.  

SEQUENTIAL DECODING AND CONVOLUTIONAL CODES 

Another example of a b ina ry  coded system w i t h  b i t -by -b i t  s i g -  
n a l l i n g  a t  t h e  t r a n s m i t t e r  u ses  convo lu t iona l  codes wi th  s e q u e n t i a l  
decoding. Convolut ional  codes a r e  n o t  block codes.  Information 
b i t s  a r e  encoded cont inuous ly  by forming p a r i t y  checks as sums of  
in format ion  b i t s  from f i x e d  p o i n t s  i n  t h e  informat ion  b i t  stream 
( i . e . ,  from a set  of  t a p s  on a s h i f t  r e g i s t e r  through which t h e  
informat ion  b i t  s t r e a m  p a s s e s ) ,  whereas, i n  an ( n , k )  block code, 
a block of  k informat ion  b i t s  a t  a t i m e  are encoded i n t o  n chan- 
n e l  symbols, and t r a n s m i t t e d  and t h e  process  r epea ted .  

I t  should be noted t h a t  t h e  d i f f e r e n c e  between convolu t iona l  
codes and block codes i s  somewhat a r t i f i c i a l .  Convolut ional  codes 
can g e n e r a l l y  be thought  of  a s  a class of  very  long  block codes,  
s i n c e ,  i n  p r a c t i c e ,  t h e  i n p u t  in format ion  stream i s  p e r i o d i c a l l y  
te rmina ted  f o r  p r a c t i c a l  reasons  such as r e synchron iza t ion  and 
b u f f e r  overf low o r  excess ive  computation i n  decoding. 

The r e s u l t i n g  codewords of  a convo lu t iona l  code can be re- 
presented  by a b ina ry  tree s t r u c t u r e .  The s e q u e n t i a l  decoding 
procedure amounts t o  a t r ee - sea rch ing  a lgor i thm t o  f i n d  t h e  code- 
word which w a s  most l i k e l y  s e n t .  The performance of such a scheme 
is  f a i r l y  impressive.  For code r a t e s  less than  some p resc r ibed  
q u a n t i t y  Rcomp (a number which depends on t h e  c h a n n e l ) ,  one can 
achieve  t h e  n e g l i g i b l e  error  p r o b a b i l i t y  guaranteed by t h e  coding 
theorem. The p r i c e  pa id  i s  an amount of  computation and a decod- 
i n g  b u f f e r  s i z e  which i s  l a r g e  ( b u t  n o t  e x p o n e n t i a 2 ) .  This  i s  a 
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1, 

good example of the trade-off between a simple encoder and a com- 
plex decoding algorithm. However, simple calculation shows that 
with 2-level quantization at the receiver, Rcomp constrains 
Eb/Nolmin =  IT IT In 2/2)], a 3-dB departure from the general theo- 
retical limit. Even if one allows =-level quantization at the 
receiver, there is still a 3-dB loss in performance; i.e., 
Eb/Nolmin = 2 In 2. Some typical performance curves for sequen- 
tial decoding have been sketched onto the graph of Figure 7. In 
many practical situations, eight levels are all that is usually 
required to come close to the performance of =-level quantization. 
The reason for the family of curves is the large random variation 
of computation required by the decoding algorithm. In fact, the 
theoretical scheme allows unrestricted (impractical) decoder 

theoretical performance Eb/Nqpmin = 2 In 2 is, for the most part, 
due to the practical constraints on these quantities. 

1 

i buffer size and amount of com utation. The deviation from the 

The large gap in performance between convolutional codes with 
sequential decoding and block codes of short length plotted in Fig- 
ure 7 is somewhat misleading. There is nothing magical about con- 
volutional codes: they are essentially just a class of big block 
codes. They have some nice properties (e.g., a tree structure) 
which are profitably exploited by sequential decoding. There are 
other known classes of block codes which have been constructed 
with nice structures which appear to be good. Work is being done 
in trying to develop efficient decoding algorithms for these codes. 

For one such class of codes, BCH codes, a fairly efficient 
suboptimum (algebraic) decoder exists. Using bit-by-bit signalling 
with 2-level quantization at the receiver, simulation has shown 
that the (255, 123) BCH code's Performance is only about 2 dB be- 
low sequential decoding with 2-level quantization (and about 2 dB 
above the best short-length block code plotted in Figure 7). How- 
ever, when compared with sequential decoding with oo-level quantiza- 
tion (achieved in practice with about 8-levels) there is a 5-dB 
gap. The sequential decoding algorithm can easily incorporate 
the additional information gained by multi-level quantization, 
whereas this BCH decoder cannot. Also, the average amount of com- 
putation for BCH decoding is larger than for sequential decoding, 
but does not exhibit the large random variation of the latter. 
Note that this is an example of just one type of possible BCH 
decoder. 

r 

1 

Sequential decoding is an adaptive search technique. It is 
essentially non-algebraic in nature, exploiting the probabilistic 
information at the receiver. It is not designed for the worst- 
case channel noise, but instead adapts to changing channel disturb- 
ance. Schemes of this general type could quite possibly be used 
to decode efficiently some of these other classes of "good" block 
codes (possibly similarly constrained to operate at rates a fraction 
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of c a p a c i t y ) .  I t  would appear  t h a t  t h e  m o s t  e f f i c i e n t  a lgor i thm 
would, i n  g e n e r a l ,  e x p l o i t  both t h e  unde r ly ing  code s t r u c t u r e  ( i f  
any) and t h e  p r o b a b i l i s t i c  in format ion  ob ta ined  from t h e  receiver 
i n  t h e  decoding. 

J u s t  how much of t h e  performance of  convo lu t iona l  coding 
w i t h  s e q u e n t i a l  decoding i s  fundamental and what p o r t i o n  i s  j u s t  
due t o  t h e  r e l a t i v e l y  s m a l l  amount of exper imenta l  e f f o r t  expended 
t o  f i n d  e f f i c i e n t  decoding a lgor i thms of t h i s  g e n e r a l  t ype  f o r  
o t h e r  classes of  codes remains t o  be  seen.  

CONCLUSIONS c 

Fundamental t o  t h e  communication system d e s i g n  problem i s  
e f f i c i e n t  source c h a r a c t e r i z a t i o n .  Having modelled t h e  source ,  r 

as much redundancy w a s  removed f r o m  source  o u t p u t s  as w a s  p o s s i b l e  
the reby  "compressing" t h e  d a t a .  Faced wi th  a n o i s y  t r ansmiss ion  
medium ( i n  t h i s  case, space wi th  front-end receiver n o i s e ) ,  t h e  
t a s k  w a s  t o  t r a n s m i t  t h i s  "compressed" source  r e l i a b l y  t o  t h e  
u s e r .  A t  t h e  s t a r t ,  bo th  analog and d i g i t a l  communication sys-  
t e m s  w e r e  cons idered .  When t h e  g e n e r a l  problem w a s  recognized as 
be ing  unwieldy, t h e  d e c i s i o n  w a s  made t o  pursue on ly  one area -- 
d i g i t a l  communication -- s i n c e  it i s  less well-known t o  t h e  com- 
munication system d e s i g n e r  t han  analog techniques .  

While r e a l i z i n g  t h a t ,  i n  g e n e r a l ,  t h e  r e s u l t s  would be sub- 
optimum fo r  r e a l  systems,  it w a s  assumed t h a t  t h e  source  had been 
e f f i c i e n t l y  encoded i n t o  b ina ry  d i g i t s  w i t h i n  t o l e r a b l e  d i s t o r t i o n  
and t r a n s m i t t e d  t o  t h e  u s e r  ove r  a n o i s e l e s s  channel.  With t h i s  
assumption, t h e  space  channel w a s  approximated by a n o i s e l e s s  
channel  u s i n g  channel coding t o  "c l ean  it up''. T h i s  meant making 
t h e  informat ion  b i t  error  ra te  on t h e  channel n e g l i g i b l y  s m a l l .  
A f t e r  s o m e  s imple c a l c u l a t i o n s ,  it w a s  seen t h a t  f o r  a f i x e d  code 
ra te ,  R, t h e  informat ion  b i t  e r r o r  r a t e  w a s  a f u n c t i o n  of t h e  i n -  
formation b i t  energy and t h a t  t h e r e  w a s  a t r ade -o f f  between t h i s  
energy,  t r a n s m i t t e r  power, channel  a t t e n u a t i o n ,  and t h e  rece ived  
informat ion  b i t  ra te .  The s i m p l i c i t y  of  t h e  r e l a t i o n s  de r ived  
r e l a t i n g  error ra tes  t o  SNR i s  due t o  t h e  f o r m  of t h e  s t a t i s t i c s  
for  t h e  space channel.  They allowed s imple  bounds on optimum sys-  1 

t e m  performance t o  be ob ta ined .  Such r e s u l t s  should no t  be ex- 
pec ted  on m o r e  g e n e r a l  channels ,  such as b u r s t y  channels ,  f ad ing  
channels ,  o r  o t h e r  H F  channels .  A l s o ,  systems designed t o  func- r 
t i o n  e f f i c i e n t l y  f o r  a space channel should n o t  be expected t o  
work w e l l  on o t h e r  t ypes  o f  channels .  

I m p l i c i t  i n  t h e  d i s c u s s i o n  t h u s  f a r  has  been a t rade-of f  be- 
tween  code ra te ,  R ,  and t h e  a c t u a l  in format ion  ra te ,  r ,  a t  t h e  
receiver. I t  has  been seen  from t h e o r e t i c a l  c o n s i d e r a t i o n s  t h a t  
maximum informat ion  r a t e  i s  achieved w i t h  extremely low code rates 
( i . e . ,  R -t 0 ) .  What does a l l  t h i s  mean h e u r i s t i c a l l y ?  Suppose 
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that based on subjective considerations, a suitable error rate 
Pb is decided on (e.g., Pb = 10-4). With no channel coding 
(R=l) , this implies a particular Es Iu.c. = Ebluec 
rVec. = Sr/EbIu.c . 
yields rc = Sr/EbTC. Therefore rc > ru.c., if and only if, 
Eblc < Ebluec.. In general, given two codes, 1 and 2, then 
r2 > rl if and only if Eb2 < Ebl. Since Esl = RlEbl and 
Es2 = R2Eb2, we have Es2/R2 < E s l / R 1 .  Therefore, higher 
information rate, r, means lower information bit energy Eb which 
since E, = SrTb = PlEb, means lower channel bit energy. This 
last relation implies increased channel bit error rate p (lower 
SNR on the channel due to the decrease in channel bit duration 
Tc means less allowed energy per channel bit). The trade-off is 
clear. The more code redundancy 1-R  added to combat channel 
noise, the smaller E, becomes and channel errors become more 
likely. Therefore, the amount of noise immunity obtained from the 
code must more than offset the accompanying increase in channel 
errors caused by the decrease in channel bit energy. This form 
of code performance loss is called code  r a t e  Zoss and must be 
compensated for by a decrease in information bit error rate. 
This then can be turned into increased information rate, r, by 
lowering the required signal energy. 

which yields 
Now, consider using channel &oding which 

Earlier in this section, two quantities for information rate, 
rs and r, were defined. The quantity rs is the source rate and is 
used to characterize the source. It is a property of the source 
and the source encoder and is independent of the remainder of the 
communication system. The quantity r is the information bit rate 
achieved at the receiver and depends on the received transmitter 
power and information bit energy. One would like r = rs. In 
general, however, r < rs since most interesting sources have a 
very high data rate; in this case, a data buffer is assumed or 
data is thrown away. If r > rs, the channel rate is higher than 
necessary and a simpler system could probably be used. 

An advantage of block coding schemes over uncoded systems 
not previously mentioned is their immunity to imprecise channel 
model statistics (especially on the tails of the distribution 
where the Gaussian form given by central limit theorems tends to 
bxeak down.) In calculating error performance for block codes, 
one considers the behavior of long sequences of channel symbols 
and, therefore, is treating "averaged" or "smoothed" quantities 
as one does with laws of large numbers. Such operations depend 
on robust statistical properties of sequences (and sums) of ran- 
dom variables (the channel symbols) and are therefore essentially 
independent of individual channel symbol statistics. 

As was pointed out earlier, the encoding of long block codes 
can be implemented fairly easily. Ease in decoding is generally 
the problem and, consequently, a large amount of research effort 
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is directed toward this end. Of course, new classes of codes are 
continually being searched for with the hope that they might have 
simple decoding procedures. It should be mentioned, however, 
that depending on the particular system constraints, fairly com- 
plex decoding algorithms may be tolerable. For example, in space 
communications where spacecraft transmitter power and space are 
at a premium, a simple encoder might be used to transmit data at 
high rates to ground stations. Data could then be either stored 
on tape or processed real-time by computer, depending on the 
noise level, by using a complex decoding algorithm. 

In this report, block codes have been considered which allow 
one to correct channel errors in the received information (error- 
correcting codes). Another alternative would be to use simpler 
block codes which simply detect channel errors and request the 
retransmission of the information in error. Under such circum- 
stances, the quantities of interest would include the average 
transmission rate and the probabilities of detected and undetected 
errors. Such a scheme is just a special case of a communication 
system with a feedback link (which may be noisy or noiseless). 
How does such a scheme compare with the schemes thus far con- 
sidered? This is a legitimate question which should be considered 
(e.g., telephone lines are natural 2-way links). 

Finally, as has already implied, coding is not only 
relevant fo r  deep space probes where received power is weak and 
SNR is low. Depending, of course, on the particular system de- 
sign constraints, coding can be used when data rates are so high 
that extremely low Eb is available; remember r = Sr/Eb bits/sec. 
Of course, before starting to use channel coding here, it is 
assumed that the data source itself has been efficiently encoded 
so that rs is not high due to remaining redundancy in the data. 
Once this has been checked and the receiver gain has been turned 
up all the way and still r << rs, one must turn to channel coding 
if a higher received data rate is desired. 
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APPENDIX 

SUMMARY 

When the results of rate-distortion theory (ref. l), are 
used, an upper bound on information rate (bits/sec) as a function 
of bit error probability can be calculated. A novel interpreta- 
tion of the trade-offs between bit error rate, signal-to-noise 
ratio (SNR), and information rate is presented which is parti- 
cularly appealing to the communication system designer. 

Rate-distortion theory extends Shannon's results for error- 
free transmission (ref. 2 )  to include bounds on the performance 
of communication systems which tolerate some distortion in re- 
production to improve data rate or reduce system complexity. A 
cursory treatment of the theory relevant to the problem at hand 
is presented. 

RATE -D I STORT I ON T H E 0  RY 

It is desired to transmit over a communication channel to a 
user the outputs from an information source. As a measure of 
the fidelity of user reproduction, a single-letter distortion 
function d(u,v) is defined which measures the relative unhappi- 
ness of receiving letter v when u was actually sent. The channel 
is assumed to be memoryless and is therefore completely charac- 
terized by a set of transition probabilities Pr[v/u] = Pr[v re- 
ceived/u sent] for all u,v and specifies the entire communication 
system between the information source and the user. It is 
assumed that sequences of k source letters are encoded into a 
block code of n channel symbols before being sent over the channel. 
Define . 

k 

where the subscripts denote su&essive source letters in a parti- 
. cular code block and the average distortion per letter 
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w h e r e  the  sum i s  taken  over a l l  p o s s i b l e  source  and r ece ived  se- 
quences of l e n g t h  k.  The r a t e - d i s t o r t i o n  f u n c t i o n  R(D*) i s  de- 
f i n e d  as t h e  minimum mutual in format ion  between t h e  source  and 
t h e  u s e r  (calculated for a single-channel use) minimized over a l l  
channels  s u b j e c t  t o  t h e  c o n s t r a i n t  t h a t  t h e  average source  l e t t e r  
d i s t o r t i o n  

d ( u , v )  Pr[v/u]  P r [ u l  5D* 
U , V  

where Pr [v /u]  are channel  t r a n s i t i o n  p r o b a b i l i t i e s  and P r [ u ]  t h e  
sou rce  d i s t r i b u t i o n .  I t  can be shown (ref.  1) t h a t  given a 
channel  of c a p a c i t y  C wi th  t o l e r a b l e  d i s t o r t i o n  l e v e l  D* ( i .e . ,  
DSD*) ,  t h e  informat ion  t r ansmiss ion  ra te  k/n ( informat ion  symbols/ 
channel  symbol) i s  upper-bounded by C/R(D*). I n  f a c t ,  it i s  pos- 
s i b l e  t o  approach t h i s  ra te  a r b i t r a r i l y  c l o s e l y  wi th  s u i t a b l y  c o m -  
p l e x  encoding of t h e  source  l e t te rs  ( i . e . ,  l a r g e  n ) .  The above 
r e s u l t s  a l l o w  us t o  i n t e r p r e t  R(D*) as t h e  equivalent rate of the 
source. 

DERIVATION O F  THE BOUND 

I f  one l e t s  t h e  source  be t h e  independent b ina ry  source  wi th  
equiprobable  l e t te rs  and t h e  s i n g l e - l e t t e r  d i s t o r t i o n  d ( u = i , v = j )  
= l - S i j ,  then  

k 

i=l 
D = L C  P = P b  b i  K 

where Pbi  equa l s  t h e  p r o b a b i l i t y  o f  b i t  error i n  t h e  i ’ t h  p o s i t i o n  
of t h e  encoded source  sequence and, t h e r e f o r e ,  Pb i s  t h e  average 
b i t  e r r o r  p r o b a b i l i t y .  For  t h i s  sou rce ,  it has  been shown (ref.1) 
t h a t  R ( D )  = R(Pb) = 1 - H(Pb) where H ( x )  i s  t h e  b ina ry  en t ropy  
f u n c t i o n  H(x) = -x l o g  x - (1-x) l o g  (1 -x ) .  Therefore  w e  have: 

k <  C C 
n-R(Pb)=1-H(Pb) 

where e q u a l i t y  can be approached a ; b i t r a r i l y  c l o s e l y  by i n c r e a s i n g  
n ( i . e . ,  long  block c o d e s ) .  
b i t  d u r a t i o n ,  he has:  

Now if one l e t s  Tc equa l  t h e  channel 

k C 1 q ‘ I - H ( P b )  T C 
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C 
1-..-- H (Pb) rc r <  

where r = information bits per second, and rc = channel bits per 
second. 

A heuristic derivation of Eq. (1) has already been given 
in the main body of the paper. 

If, as a communication system designer, a particular modem 
(transmitter-receiver structure) has been given, then the channel 
capacity C, the channel bit duration Tc, and, in turn, Ifc, are 
fixed in the design. In this case, Eq. (1) yields the maxi- 
mum information bit rate at which one can transmit over this 
channel, no matter how cleverly the source is encoded, while main- 
taining a bit error rate Pb. However, if one has some freedom 
in designing the modem, the maximum information bit rate can be 
derived from Eq. (l), if one maximizes the right-hand side over 
all allowable modems (e.g., all modems with an average transmitter 
power constraint St) : 

C 
1 - H(Pb) C r_< max 

[allowable] 
modems 

which implies the maximization problem: 

C - max 
[allowable] Tc 
modems 

APPLICATION TO THE SPACE CHANNEL 

Some important examples w i l l  now be treated. 

Case I - Space Channel/Two-Level Quantization 

The encoded bit sequences from the source are transmitted 
using bit-by-bit signalling (optimum binary antipodal signalling) 
over a white Gaussian additive noise channel with average noise 
power No(single-sided) and average transmitted signal power St. 
The received power Sr = aSt where a is a function of distance 
from the transmitter, antenna gain, etc. At the receiver, the 
signal is quantized to one of two levels and a "hard decision" 
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made as t o  whether a " 0 "  or  a "1" w a s  s e n t .  For  t h i s  case, w i t h  
f i x e d  St and a, one has :  

max - = max ('B:: 
[ a l lowable]  Tc [BSC modems] 

modems f i x e d  Sr 

i s  a monotone- 'BSC (sr 'Tc) 
TC 

I t  can be shown t h a t  g(Sr,Tc) = 

dec reas ing  f u n c t i o n  of  Tc. The re fo re ,  

'BSC ( 'rrTc)) = $ i m  (CBS; (sr'Tc) dCBSC 
max C +O C )= dTc [BSC modems] 

f i x e d  Sr I T C =  0 

Tr I n  2 

I n s e r t i n g  i n  Eq. (1*) : 

1 
3 I n  2 ( 1 - H ( P b ) )  

where e q u a l i t y  can be approached a r b i t r a r i l y  c l o s e l y  by complex 
encoding ( long  block c o d e s ) .  

C a s e  I1 - Space Channel/Unquantized Receiver 

Same as C a s e  I wi th  m-level q u a n t i z a t i o n  a t  t h e  r e c e i v e r .  I t  
i s  e a s i l y  shown t h a t  t h e  c a p a c i t y  of t h e  unquantized channel  CU.Q. 
is: 
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,,- 

w h e r e  EG is  t h e  e x p e c t a t i o n  us ing  t h e  Gaussian p r o b a b i l i t y  d i s t r i b u -  
t i o n  with zero mean and u n i t  va r i ance  and E, = SrTc.  Once aga in ,  
it i s  easy t o  show t h a t  C U . Q . / T ~  i s  monotone-decreasing. 

Therefore ,  

Since 

Eb - nEs - nSrTc - - 
NO kNO kNO 

- - - -  r ’  

P 

where Eb and Es are informat ion  b i t  and channel  b i t  energy,  res- 
p e c t i v e l y ,  one can r e i n t e r p r e t  t h e  preceding r e s u l t s  as an optimum 
bound on Pb ve r sus  Eb/No. 

C a s e  I 

or 
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Pb2H-I (. - ~ Eb/No ). 
- In 2 

Case I1 

Eb - 2ln 2 [l-H(Pb)] or P > H b- 
NO 

Therefore, no matter how cleverly one encodes the information 
source, one can only achieve a 10 log2 ~r/2 2 dB decrease in re- 
quired Eb/No by going from 2-level to -level quantization at the 
receiver. Of course, in practical situations, one might very well 
consider trading some coding complexity for an increased number of 
quantization levels (in many cases no more than 8 levels of quanti- 
zation are necessary to approach the performance of the unquantized 
receiver). Figure 7 is a graph of Pb versus Eb/” for some typical 
codes plotted for comparison with these optimum bounds. The ortho- 
gonal and biorthogonal codes use a-level quantization (matched 
filtering) at the receiver as -do the convolutional codes decoded 
by sequential decoding. All the other codes have been plotted 
assuming 2-level quantization. One can see that for small Pbr one 
still has quite a way to go (about 6 or 7 dB) to achieve the mini- 
mum Eb/No guaranteed by the bound when restricted to use one of the 
given (n,k) block codes of moderate size. As new codes and de- 
coding techniques are found, the graph of Figure 7 can be used to 
achieve a partial ordering of the codes according to required 
Eb/No (or, equivalently, information rate) for a given error rate 
Pb. Of course, complexity of a particular coder and decoder im- 
plementation and the amount of computation per information symbol 
must also be considered. ‘.. 

Many communication system designers feel that they have been 
short-changed by the communication theorist in that he has not 
stated his results in terms meaningful to the practicing engineer. 
For example, the practicing system design engineer is not directly 
concerned with the particular mapping of source symbols to code- 
words used to match the information source to the channel or in 
the code information rate R = k/n. In many cases, he will toler- 
ate any code (within the system constraints of complexity, com- 
putation time, etc.) and is really interested in overall system 
performance in terms meaningful to him -- such as achievable data 
rate and error rate. In a given design situation, he may or may 
not have the freedom to choose all parts of the system. In general, 
however, he is seeking to optimize the overall system over a class 
of codes and allowable modems. This last degree of freedom may 
be interpreted as a variable channel capacity, C, subject to some 
physical constraint (e.g., average transmitter power). 
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As examples of this general approach, two cases were given. r” The technique can be applied to other channels of interest in a 
straightforward way. The simplicity of the results for the two 
cases given is due primarily to the additive Gaussian white noise 
assumption. Also, the results can be extended to other sources 
and fidelity criteria (although the calculations, in general, 
would be more difficult). For a good introductory treatment of 
rate-distortion theory and methods used to calculate rate- 
distortion functions and appropriate bounds for different distor- 
tion criteria, see Gallager (ref. 3 ) .  

I 

I 
1 

I 
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